
ADDITIVE MANUFACTURING INSERTS

Characteristics of 3D printing insert

- 3. After printing, insert surface roughness:-
- MS1 = Ra 9um / Rz 50um
- CX = Ra 5um / Rz 26um
- 4. AM insert can be polish up to SPI A-3 to A-2 level
- 5. AM insert can be laser weld

- 1. There two types of metal powder that are suitable for plastic injection tool: MS1(equivalent to 1.2709 steel) and CX (equivalent to Assab Corrax stainless steel)
- MS1 hardness: 52 54 HRC (after heat treatment)
- CX hardness: 48-51 HRC (after heat treatment)
- 2. After printing, the insert hardness is about 30 34 HRC(before heat treatment)

- 6. AM insert can be texture or laser texturing
- 7. AM insert can be coated
- It is recommended to use a coating process temperature not more than 400 degree
- Recommendation coating process: nickel and PVD

Advantages of AM for the tool making

- **♦** Freedom of design
- Hot spots or critical areas of the insert is able to implement conformal cooling system
- Productivity increased due to cycle-time reduction and better molding yield rate

- ◆ **Reduction of cost** per plastic product
- Validation of benefits and results through simulation
- > Flowrate analysis
- Identified hot-spot areas
- ◆ Insert life time improved due to better uniform cooling system conformal cooling

- Part quality improved due to better cooling system through conformal cooling
- > Better dimension stability
- Less deformation on the product
- High number of various cooling designs are possible

MAE

Type of material For 3D Printing

3D printing steel vs conventional steel

	Conventional Steel Material			3D Printing Steel Material	
	Orvar Supreme (1.2344)	Stavax (1.2083)	1.2343 (H13)	1.2709 (MS1)	CX (Assab Corrax)
Yield strenght (Rp 0.2%) 【Mpa】	1250	1290	1400	1930	1670
Tensile strenght 【Mpa】	1400	1780	1600	2050	1760
Elongation at break 【%】	13	NA	3-5	4-6	7
Modulus of elasticity 【Gpa】	210	210	215	200	200
Hardness [HRC]	52-54	48-52	52-54	52-54	48-51
Density [Kg/dm3]	7.8	7.74	7.8	8.0	7.7
Coefficient of thermal expansion [m/mK]	12.6x10 ⁻⁶	11x10 ⁻⁶	11.3x10 ⁻⁶	10.3x10 ⁻⁶	11.7x10 ⁻⁶
Thermal conductivity [W/m °C]	25	20	25	20	21
Corrosion resistance	Yes	Yes	No	No	Yes

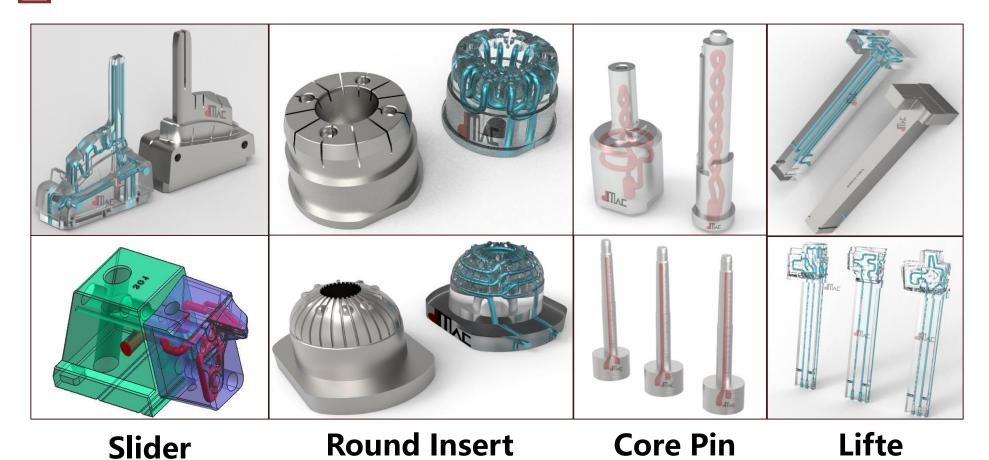
Difference type of powders for 3D printing

Family	Metal Alloy			
Aluminium	EOS Aluminum AlSi10Mg			
Cobalt Chrome	EOS CobaltChrome MP1			
	EOS CobaltChrome RPD			
	EOS CobaltChrome SP2			
Maraging Steel	EOS MaragingSteel MS1			
Nickel Alloy	EOS NickelAlloy HX			
	EOS NickelAlloy IN625			
	EOS NickelAlloy IN718			
Stainless Steel	EOS StainlessSteel 17-4PH			
	EOS StainlessSteel 316L			
	EOS StainlessSteel CX			
	EOS StainlessSteel GP1			
	EOS StainlessSteel PH1			
Titanium	EOS Titanium Ti64			
	EOS Titanium Ti64ELI			
	EOS Titanium TiCP Grade 2			

3D Printing for Tooling Application

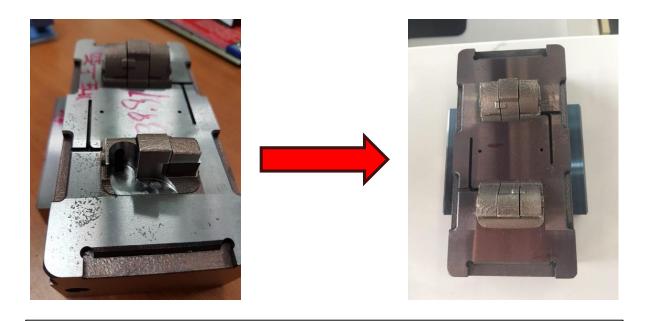
3D Printing for Tooling Application-1

Main Insert


Sprue Bushin g

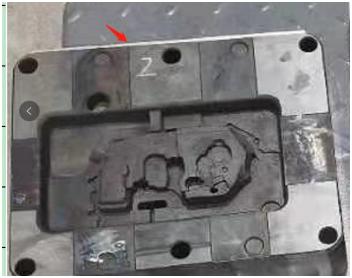
Hot-Tip Bushing

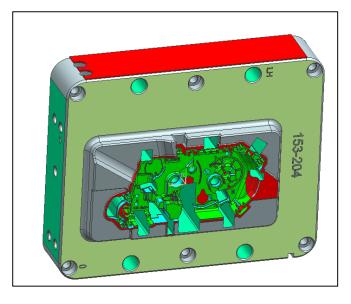
Sub-Insert


3D Printing for Tooling Application-2

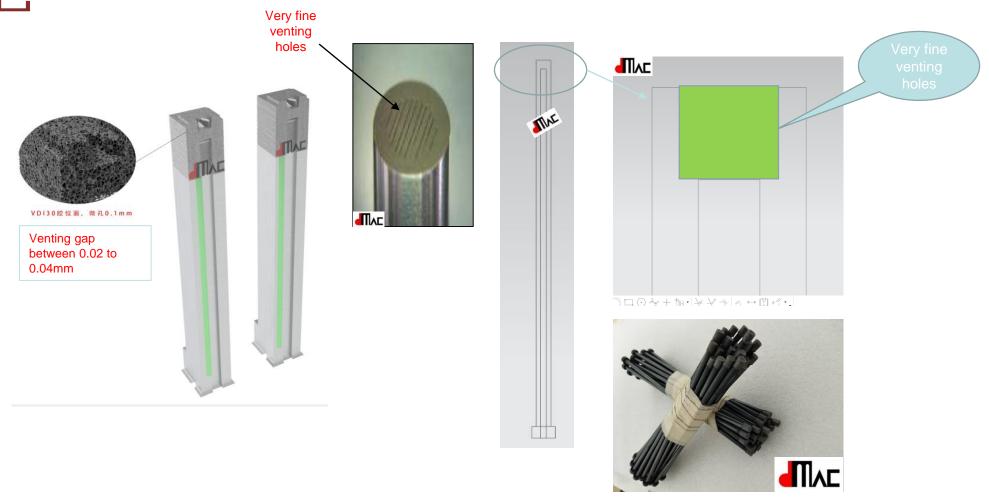
www.rerom.net

3D printing for mold repair - 1




For example: CNC over-cut during machining due to programming mistake and we can just grind it away the over-cut portion and then re-print on the existing insert

3D printing for mold repair - 2



For example: main insert overall size is undersize. Normally we may choose to use welding to repair but welding is not good for insert life span and also cosmetic is not so nice to view. We can then use 3D printing to add small amount of thickness to the undersize surface and then grind it to the required size.

Air-venting for ejector pin & sub-insert

